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ANALYSISOF CARDIOVASCULAR INSTABILITY
BY AMATHEMATICAL MODEL OF BAROREFLEX CONTROL

E. Magos®, V. Biavati, and M. Ursino
Department of Eledronics, Computer Science and Systems, University of Bologna, Bologna, Italy

Abstract- A mathematical model of the short-term arterial
pressure control is used to investigate the possible origin of
blood pressure waves (Mayer waves) and of heart rate
variability signals. The model includes a pulsating heart, the
pulmonary and systemic circulation, and various feedback
regulatory mechanisms. Feedback mechanisms are activated by
changesin systemic arterial pressure (arterial baroreflex) and in
right atrial pressure (cardiopulmonary baroreflex) and work on
systemic resistance, systemic venous unstressed volume, heart
contractility and heart period. The latter involves a balance
between sympathetic and vagal activities (sympato-vagal
balance). A sensitivity analysis on the parameters of feedback
mechanisms revealed that a significant increase in the gains and
time delays (up to 9 s) of all the arterial baroreflex sympathetic
mechanisms is required to induce instability. In this condition,
systemic arterial pressure exhibits spontaneous oscillations with
a period of about 20 s, similar to Mayer waves. Moreover, an
increase in the gain and time delay (up to 3.5 s) of the arterial
baroreflex vagal mechanism causes the appearance of
unpredictable fluctuations in heart period, with spectral
components in the range 0.08-0.12 Hz. The cardiopulmonary
baroreflex plays a less important role in the genesis of the
aforementioned instability phenomena.

Keywords- Baror eflex, Mayer waves, variability signals

|. INTRODUCTION

As it is well known, systemic aterial pressure (SAP)
sometimes exhibits spontaneous wif-sustained oscill ations,
with a period of about 20 s (i.e., much slower than the adual
respiratory cycle). These oscill ations were first recognized by
Sigmund Mayer in 187 and subsequently observed by many
other authors in a variety of conditions, bath in experimental
animals and humans (for areview see[1,2]).

In addition, heat rate (HR) is known to exhibit irregular
and sometimes unpredictable fluctuations. Frequency analysis
of the heat rate signal, in men, shows the existence of two
bands. a high frequency band (0.15-0.5 Hz) which is
espedally correlated with respiratory and vagal adivity, and
alow frequency band (0.06-0.15 Hz) which probably refleds
contributions from both sympathetic and parasympathetic
pathways.

Despite the grea amount of clinica and experimental
studies on this subjed appeared in the last decades, the origin
of these ardiovascular fluctuations and their possble
functional role ae ill a matter of debate among
physiologists. Mathematicd models of cardiovascular
regulation can provide iTaulEDS 3 '

guantitative terms. In recent yeas, we formulated a
mathematical model of the arteria baroreflex control in
pulsatiie @nditions, which is able to summarize many
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experimental results on baroregulation quite well [3]. Aim of
the present work isto use amodified version of this model to
study conditions leading to instability of the cardiovascular
regulation system, with the appeaance of SAP and HR
fluctuations.

The paper is structured as follows. The main aspeds of

the modd are first preseed 85988 0 Td(r)Tj (p)Tj 0.024.4 Tj Q g6.C
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Fig. 1. Eledric analog d the cadiovascular system. See text for the meaning d symbals.

pressure in al intrathoradc compartments) and for the
abdominal pressure Pgpg (Which is the extravascular pressure
in the splanchnic drculation). The latter term has been
introduced to simulate the dfed of diaphragm movements on
the @ddominal veins [4]. By contrast, extravascular pressure
in the other compartments has been maintained constant and
equal to zero (which is the reference atmospheric pressure).
The expressons for the intrathoradc and abdominal pressures
during each respiratory cycle have been given in order to
approximately reproduce the patterns reported in Moreno et
al. [4]. The respiratory period isaslong as 5 s. In order to
avoid the occurrence of a retrograde blood flow caused by
respiration, unidiredional valves have been included in the
thoradc and pumonary venous pathways. With the previous
assumptions, respiratory fluctuations in  the main
hemodynamic quantities (arterial blood presare, venous
return, left and right stroke volume) can be reproduced fairly
well.

Description o the feedback regulatory mechanisms
incorporates two groups of pressure receptors (high-presaure
or arterial  barorecgptors and  low-pressure  or
cadiopulmonary baroreaeptors) and four effedors to fulfill
the regulatory adions. These ae the systemic peripheral
resistance (both in the splanchnic and extrasplanchnic
vascular beds), the systemic venous unstressed volume (both
in the splanchnic and extrasplanchnic vascular beds), the

heat contradility (charaderized by means of the end-systolic
elastance both in the right and left ventricle) and the heat
period.

The first three effedors are assumed to depend on the
adivity of the sympathetic pathway only. Their response to
baroreceptor stimulation is described as in the block diagram
of Fig. 2. We @n aobserve the presence of two dfferent input
stimuli, coming from arterial baroreceptors and
cadiopulmonary baroreceptors, respedively. The first group
of receptors is ensitive to systemic ateria pressure, Pg,,

whereas the right atrial pressure, P, affeds the second

group o recetors. The pieces of information coming from
the two groups of receptors are not simply summed up bu,
after summation, are passd through a sigmoidal static
charaderistic, with upper and lower saturation. The gains, G,

and G, represent the maximal strength of the aterial and

cadiopulmonary baroreflex (i.e., the strength at the central
point of the sigmoidal relationship). Finaly, the mechanism
dynamics include a pure delay, D, and a low-pass first order
filter with atime constant 7.

The control of heat period is different from the other ones
since, asit is well known, it involves a balance between the
sympathetic and vagal adivities. Hence, we introduced the
presence of two different gains for the arteria and
cadiopulmonary reflexes and d two dstinct dynamics, in
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Fig. 2. Block diagram describing adion d a sympathetic mechanism which modifies the parameter 0 (either peripheral resistance, venous unstressed vdume
or heat contractility). Ga and Gc: arterial and cardiopumonary baroreflex gains; D: time delay; T: time constant of the first-order filter. The sigmoidal
relationship isincreasing asto urstressed vdume and deaeasing as to resistance and heat contradili ty.

order to separately mimic the adivation of sympathetic and
vagal fibers, respedively.

A basal valueto all parameters in feedbadk medanism has
been given to simulate results of physiologicd experiments
(see[3] and [9]).

1. RESULTS

A first analysis was performed by modifying the gains and
time delays of the ateria baroreflex mechanisms involving
sympathetic fibers. To this end, we aded on the time delays,
Dy and arterial baroreflex gains, G, in Fig. 2. By contrat,

parameters charaderizing the vagal control and the
cadiopulmonary baroreflex were maintained at their basal
value. The analysis reveded that the stability margin of the
control system is quite high. In particular, we noticed that
increasing the gain and time delay of a single mechanism
alone does not lead to oscillatory behavior, but only a
combination d parameter changes leads to instability.
However, if the medchanism gains and time delays are dl
significantly incressed, one can dbserve the occurrence of
Mayer waves with a period o about 20 s (seeFig. 3). In the
exemplary case smulated in Fig. 3, oscillations were
obtained by multiplying the gain of al medianisms by a
fador 4.5, and increasing the time delays up to 9 s. By
contrast, changes in the gains of the cadiopulmonary
baroreflex have anegligible dfed on system stabilit y.

A second sensitivity analysis was performed to unmask
the role of the vagal control on the genesis of unpredictable
fluctuations in heat period. To this end, we progressvely
increased the gain of the ateria baroreflex vagal mechanism
and the corresponding time delay. Results show that, if the
time delay of the vagal medhanism is increased above 2 s, a
double period bifurcaion occurs. A subsequent increase in
time delay (above 3 s) causes the appeaance of unpredictable
heat period fluctuations. An example of the results obtained
is dhown in Fig. 4. In these simulations we used a value for
the ateria baroreflex vagal gain alittl e higher than basal and
then we progressively increased the vagal time delay. All the
other parameters were unchanged. With a normal, or a little
increased time delay, the heart period signal exhibits just the
respiratory oscill ation, with a period as long as 5 s (Fig. 4
upper panels). If the time delay is incressed above

approximately 2 s, the signal exhibits a double period
bifurcation (Fig. 4 midde panels). The oscill ation period
becomes as long as 10 s and a significant spedral component
appears at 0.1 Hz. If the time delay is further increased above
3s, we can dbserve irregular fluctuation in heart period (Fig. 4
lower panels), with a broad spedral component in the range
0.08-0.12 Hz.

IV. DISCUSSON

Aim of the present work was to investigate the role of the
baroreflex control system (both arterial and cardiopulmonary)
in the genesis of blood pressure waves and of heart rate
variability signals. The results, acquired trough a sensitivity
analysis on feadback medanism parameters, suggest that the
stability margin of the baroreflex is quite high, at least in
physiologicd conditions. Nevertheless the analysis also
reveded that the arterial baroreflex, especialy thanks to its
sympathetic comporent, may bewmme unstable if the gains
and time delays are increased compared with hypaotheticd
norma values. In these conditions, model predicts the
existence of Mayer waves with a period o about 20 s, i.e. the
same period reported in the physiologicd literature [2]. The
previous result agrees with the observation by Hatakeyama
[6]. This author observed that the baroreflex system, in dogs,
becomes unstable if a dead-time (about 3-6 s) is artificially
added to the feedbadk chain between the systemic blood
pressure and the intrasinus presaure.

A further interesting result provided by our analysis is that
the vagal comporent of the arterial baroreflex may induce
unpredictable fluctuations in heart-period, provided its time
delay is incressed above 2-3 s. It is worth noting that the
spedra comporents of these fluctuations lie within the so-
cdled Low Frequency band (LF), where heat rate variability
signals are frequently reported in the dinicd literature [1].
Also in this case, however, the dead times necessary to
induce instability phenomena ae quite high, compared with
physiologicd levels, and seam expresson of a pathologicd
behavior. Finaly, we noticed that the ardiopulmonary
baroreflex does not contribute significantly to instability. An
increese in its gains, in fad, either has little dfed on the
stability margin or, as in the @ase of venous unstressed
volume ntrol, may even improve stability.
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